Part (a)

Assume that L < 1. We need to show that $\sum a_n$ is absolutely convergent. To do this let's first note that because L > 1, there is some number r such that L < r < 1.

Now, recall that $L = \lim_{n \to \infty} \sqrt[n]{|a_n|} = \lim_{n \to \infty} |a_n|^{\frac{1}{n}}$ and since L < r, there is some N such that if $n \ge N$ then $|a_n|^{\frac{1}{n}} < r \Rightarrow |a_n| < r^n$. Now the series $\sum_{n=1}^{\infty} r^n$ is a convergent geometric series because 0 < r < 1. Since $|a_n| < r^n$ for $n \ge N$ the series $\sum_{n=N}^{\infty} |a_n|$ also converges by the Comparison Test. Since $\sum_{n=1}^{\infty} |a_n| = \sum_{n=1}^{N-1} |a_n| + \sum_{n=N}^{\infty} |a_n|$ then $\sum_{n=1}^{\infty} |a_n|$ is also convergent since adding a finite number to a convergent sequence yields a finite sum. Therefore $\sum_{n=1}^{\infty} a_n$ is absolutely convergent. Part (b)

Assume that L > 1. We need to show that $\sum a_n$ is divergent. Recall that $L = \lim_{n \to \infty} \sqrt[n]{|a_n|} = \lim_{n \to \infty} |a_n|^{\frac{1}{n}}$ and since L > 1, there is some N such that if $n \ge N$ then $|a_n|^{\frac{1}{n}} > 1 \Longrightarrow |a_n| > 1^n = 1$. However, if $|a_n| > 1$ for all $n \ge N$ then $\lim_{n \to \infty} |a_n| \ne 0$ which means that $\lim_{n\to\infty} a_n \neq 0$ and by the Divergence Test $\sum a_n$ is divergent. Part (c)

Assume the L = 1. This is true for the series $\sum_{n=1}^{\infty} \frac{1}{n^2}$ which is absolutely convergent. It is also true for the series $\sum_{n=1}^{\infty} \frac{(-1)^n}{n^2}$ which is conditionally convergent, and also true for the series $\sum_{n=1}^{\infty} \frac{1}{n}$ which is divergent.

Therefore, when L = 1, the test is inconclusive.