\qquad

Activity - Viewing Angles for a Large Screen TV

Write down necessary steps and answers clearly to earn full credit.
A large screen television is mounted on a wall so that the bottom of the screen is 48 inches off the floor. The height of the television is 32 inches. Assume that the eye level of a person watching the television is 36 inches off the floor. The figure below represents this situation where θ is the viewing angle and x is the horizontal distance of the viewer from the television.

1. Let $\beta=\theta+\alpha$ and use inverse trigonometric functions to find expressions for α and β in terms of x.
2. Use your expressions for α and β to write θ as a function of x.
3. Use a calculator to find the viewing angle to the nearest tenth of a degree for distances of 4, 6, 8, and 10 feet.

| x | $4 \mathrm{ft}=\ldots \quad$ in | $6 \mathrm{ft}=\ldots \quad$ in | $8 \mathrm{ft}=\ldots \quad$ in | $10 \mathrm{ft}=\ldots$ in |
| :--- | :--- | :--- | :--- | :--- | :--- |
| θ | | | | |

4. Use technology to graph your function from part 2. Use this graph to estimate the maximum viewing angle and the corresponding viewing distance to the nearest tenth.
5. The manufacturer suggests an "optimal" viewing distance of approximately 8 feet for this size television. Why do you think this does not correspond to the maximum viewing angle?
