Activity - Implicit Differentiation

Part 1. Let f be a differentiable function of x (whose formula is not known) and recall that $\frac{d}{d x}[f(x)]$ and $f^{\prime}(x)$ are interchangeable notations. Determine each of the following derivatives of combinations of explicit functions of x, the unknown function f, and an arbitrary constant c.
(a) $\frac{d}{d x}\left[x^{2}+f(x)\right]$
(b) $\frac{d}{d x}\left[x^{2} f(x)\right]$
(c) $\frac{d}{d x}\left[c+x+f(x)^{2}\right]$
(d) $\frac{d}{d x}\left[f\left(x^{2}\right)\right]$
(e) $\frac{d}{d x}[x f(x)+f(c x)+c f(x)]$

Part 2.

Consider the curve defined by the equation $x=y^{5}-5 y^{3}+4 y$, whose graph is pictured below.
(a) Explain why it is not possible to express y as an explicit function of x.
(b) Use implicit differentiation to find a formula for $d y / d x$.
(c) Use your result from part (b) to find an equation of the line tangent to the graph of $x=y^{5}-5 y^{3}+4 y$ at the point $(0,1)$.
(d) Use your result from part (b) to determine all of the points at which the graph of $x=y^{5}-5 y^{3}+4 y$ has a vertical tangent line.

Figure: The curve $x=y^{5}-5 y^{3}+4 y$.

Part 3. Find $d y / d x$

(a) $x^{3}+y^{3}=\tan (y)$
(b) $y^{3} \sin (y)=x^{2} y$
(c) $3 x e^{-x y}=y^{2}$

Part 4.

For each of the following curves, use implicit differentiation to find $d y / d x$ and determine the equation of the tangent line at the given point.
(a) $x^{3}-y^{3}=6 x y, \quad(-3,3)$
(b) $\sin (y)+y=x^{3}+x, \quad(0,0)$

